
Improved Distributed Algorithms for Coloring
Interval Graphs with Application to

Multicoloring Trees?

Magnús M. Halldórsson1 and Christian Konrad2

1 ICE-TCS, School of Computer Science, Reykjavik University, Iceland, mmh@ru.is
2 Department of Computer Science, Centre for Discrete Mathematics and its

Applications (DIMAP), University of Warwick, Coventry, UK,
c.konrad@warwick.ac.uk

Abstract. We give a distributed (1+ε)-approximation algorithm for the
minimum vertex coloring problem on interval graphs, which runs in the
LOCAL model and operates in O(1

ε
log∗ n) rounds. If nodes are aware of

their interval representations, then the algorithm can be adapted to the
CONGEST model using the same number of rounds. Prior to this work,
only constant factor approximations using O(log∗ n) rounds were known
[12]. Linial’s ring coloring lower bound implies that the dependency on
log∗ n cannot be improved. We further prove that the dependency on 1

ε

is also optimal.
To obtain our CONGEST model algorithm, we develop a color rotation
technique that may be of independent interest. We demonstrate that
color rotations can also be applied to obtain a (1 + ε)-approximate mul-
ticoloring of directed trees in O(1

ε
log∗ n) rounds.

1 Introduction

Vertex coloring problems are central in distributed computing. Given a
graph G = (V,E), the objective is to compute an s-coloring γ : V →
{1, 2, . . . , s} in a distributed fashion, for an integer s, i.e., to assign each
vertex one of s colors so that adjacent nodes receive different colors. A
substantial amount of research has been carried out on computing (∆+1)-
colorings, where ∆ is the maximum degree of the input graph. This is an
attractive bound, since it is easy to see that ∆ + 1 colors always suffice
to color a graph. The quantity ∆+ 1 may however be an arbitrarily poor
approximation of the chromatic number χ(G) of a graph G, which is the
minimum number of colors needed in any coloring3. In this paper, we

? M.M.H. is supported by grants 152679-05 and 174484-05 from the Icelandic Research
Fund. C.K. is supported by the Centre for Discrete Mathematics and its Applications
(DIMAP) at Warwick University and by EPSRC award EP/N011163/1.

3 For example a complete bipartite graph G = (A,B,E) with |A| = |B| = n can be
colored with 2 colors while ∆ = n.

are therefore interested in distributed approximation algorithms for the
minimum vertex coloring problem, which asks for a coloring with χ(G)
colors.

Computational Models. We consider the LOCAL and CONGEST
models of distributed computation. The input graph G = (V,E) models
a communication network, where computational units are located at every
node v ∈ V . Graph G also constitutes the problem input. The goal of a
distributed coloring algorithm is to compute a (global) coloring, where
every node reports its color upon termination of the algorithm. Every
node v ∈ V has a unique identifier ID(v) and, initially, besides their
identifiers, nodes are aware of the identifiers of their neighbors (and hence
also of its degree). Messages are exchanged in synchronous communication
rounds, where a node may exchange individual messages with each of its
neighbors. In the LOCAL model, messages of unbounded sizes may be
exchanged, while in the CONGEST model, message sizes are limited to
O(log n), where n is the number of nodes in the input graph. In both
models the objective is to minimize the number of communication rounds
required to complete the algorithm.

Minimum Vertex Coloring Problem. On general graphs, the min-
imum vertex coloring problem is NP-complete [14] and even hard to
approximate within a factor of n1−ε [23]. Nevertheless, since many dis-
tributed models focus on the number of communication rounds rather
than the runtime of individual network nodes, it is possible to compute
a O(nε)-approximation in exp

(
O(1ε)

)
communication rounds on general

graphs [5]. Linial presented a lower bound showing that coloring unori-
ented d-regular trees with o(

√
d) colors4 requires Ω(logd n) rounds [16].

This result shows that for every graph class that contains trees, com-
puting a C-approximation requires Ω(log n) rounds, for every constant
C.

Multicoloring. There are conceptual links between graph coloring and
graph multicoloring:

Definition 1. Let G = (V,E,w) be a graph with vertex weights w : V →
N. For an integer k ≥ 1, a k-multicoloring of G is an assignment φ : V →
2[k] such that:

1. For every v ∈ V : |φ(v)| = w(v), and

2. For every pair of adjacent vertices u, v ∈ V : φ(u) ∩ φ(v) = ∅.

4 Chang, Kopelowitz and Pettie argue in [8] that using a graph construction by Bol-
lobás [7], the same lower bound holds even for colorings with o(d/ log d) colors.

2

The multichromatic number χm(G) is the largest number of colors needed
in every multicoloring of G. In the minimum vertex multicoloring prob-
lem, the goal is to find a multicoloring that uses χm(G) colors. Distributed
algorithms for graph multicoloring find applications in computing MAC
schedules (see [15] and the references therein). Kuhn [15] studied a dis-
tributed multicoloring problem on general graphs, where a node v of de-
gree deg(v) receives a (1− ε) 1

deg(v)+1 fraction of all colors. Similar to the

notion of a (∆+ 1)-coloring, this quality bound is given by the degrees of
the vertices alone and may be arbitrarily far from an optimal multicolor-
ing.

Results. In this paper, we primarily address the minimum vertex col-
oring problem in interval graphs, which are the intersection graphs of
intervals on the line. Interval graphs do not contain trees and the previ-
ously mentioned lower bound thus does not apply. In a previous work, we
gave a distributed 8-approximation algorithm that runs in O(log∗ n) in
the LOCAL, and an extension of the algorithm to the CONGEST model
if the representation of the intervals are known by the network nodes [12].
We improve on [12] and give distributed (1+ε)-approximation algorithms
for coloring interval graphs for both the LOCAL and CONGEST models,
which run in O(1ε log∗ n) rounds. Similar to [12], our CONGEST model
algorithm requires that nodes are aware of their interval boundaries.

We further employ connections between coloring interval graphs and
multicoloring paths and directed trees. We prove that every (1 + ε)-
approximation algorithm for multicoloring the path requires Ω(1ε) rounds.
Since every LOCAL algorithm for coloring interval graphs can be used
for multicoloring the path, this lower bound thus also holds for coloring
interval graphs.

Our CONGEST model algorithm uses a color rotation technique that
may be of independent interest. We demonstrate that this technique finds
applications for other coloring problems as well: We present a (1 + ε)-
approximation algorithm for multicoloring directed trees using color ro-
tations, which runs in O(1ε log∗ n) rounds in the CONGEST model. This
is the first distributed algorithm for multicoloring problems with non-
trivial approximation guarantee.

Techniques. The LOCAL model algorithm of [12] simulates the sequen-
tial Greedy coloring algorithm, which traverses the vertices in an arbitrary
order and assigns the smallest color possible. The approximation guar-
antee of their algorithm follows from the fact that a Greedy coloring of
interval graphs gives an 8-approximation [21]. They construct a dominat-

3

ing set, which can be colored using few colors, via a somewhat technical
algorithm.

Our strategy is arguably simpler. We first compute a maximal distance
k-independent set I (k = Θ(1ε)) using an algorithm of Schneider and
Wattenhofer [19]. Then, nodes of I color their inclusive neighborhoods
optimally. Notice that every inclusive neighborhood Γ [v] of a vertex v
is a separator in interval graphs. The set of yet uncolored nodes thus
form connected components of diameter Θ(k). Using a theorem about
the chromatic number of circular arc graphs by Valencia-Pabon [22], we
show that there exists a completion of the current partial coloring to a
(1 + ε)-approximate coloring of the entire graph. Nodes of I then color
the connected components of uncolored nodes using the optimal color
completion.

This approach relies heavily on the ability to send messages of un-
bounded sizes. When nodes of I color connected components of uncolored
nodes, they first need to collect the topology of entire components, which
cannot be done in the CONGEST model. To overcome this difficulty, we
develop a color rotation technique: Let u, v ∈ I be nodes of the distance-k
maximal independent set such that u is located left of v and there is no
other node of I between them (the distance between u and v is thus at
most 2k). Suppose that their local neighborhoods have already been col-
ored optimally. We show that a Greedy left-to-right coloring sweep can
be initiated at u that respects the colors of u’s neighborhood and colors
all nodes between u and v. This coloring however does not necessarily
respect the colors of v’s neighborhood. Similarly, a right-to-left coloring
with similar properties is initiated by v. Since a Greedy coloring that
processes the vertices with increasing left boundaries (or decreasing right
boundaries) gives an optimal coloring in interval graphs, the two color-
ing sweeps produce optimal colorings. We then apply our color rotation
technique: Guided by the right-to-left coloring, we perform color rota-
tions using few additional colors that transform the left-to-right coloring
into a coloring that respects the colors of the neighborhood of v, giving
a (1 + ε)-approximation.

We demonstrate that the color rotation technique can be applied for
multicoloring directed trees as well. Our algorithm first computes a par-
titioning of the input tree into subtrees, which are then colored indepen-
dently. The potential color conflicts between subtrees are then resolved
via color rotations. In order to obtain the partitioning of the input tree
into subtrees, we develop an algorithm for computing a particular ruling
set, which may be of independent interest.

4

Further Related Work. To our best knowledge, the only works that
explicitly address distributed algorithms for the minimum vertex coloring
problem are the already mentioned algorithms by Barenboim et al. [5]
for general graphs and our previous work on coloring interval graphs [12].
Goldberg, Plotkin and Shannon [11] gave a 7-coloring algorithm of planar
graphs, which runs in O(log n) rounds, and a 5-coloring algorithm, which
runs in O(log n log log n) rounds and requires the planar representation of
the input graph. Barenboim and Elkin [3] gave a (b(2 + ε)ac+ 1)-coloring
algorithm for graphs of arboricity a, which runs in O(a log n) rounds
and thus subsumes the previously mentioned 7-coloring algorithm (planar
graphs have arboricity at most 3). Schneider, Elkin and Wattenhofer gave
a ((1 − O(χ(G)))∆)-coloring algorithm whose runtime depends on the
chromatic number χ(G) [18].

Due to the similarity in the problem statement, we also expand on dis-
tributed (∆+1)-coloring algorithms: The first randomized (∆+1)-coloring
algorithm uses a reduction to the maximal independent set problem given
by Luby [17]. Since the maximal independent set problem can be solved
in O(log n) time via the algorithms of Luby [17] or Alon, Babai and Itai
[1], a O(log n) rounds algorithm is obtained. Improved randomized al-
gorithms were given by Schneider and Wattenhofer [20], which runs in
O(log∆+

√
log n) rounds, and later by Barenboim et al. [6], which runs

in O(log∆) + 2O(
√
log logn) rounds. Very recently, the first randomized al-

gorithm, which runs in o(log n) rounds for any value of ∆, was presented.
Harris, Schneider and Hsin-Hao Su showed that O(

√
log∆)+2O(

√
log logn)

suffice [13]. Deterministic (∆ + 1)-coloring algorithms have been exten-
sively studied as well. The currently fastest algorithm is by Fraigniaud,
Heinrich and Kosowski [10] and uses O(

√
∆ log2.5∆+ log∗ n). This result

improved on Barenboim’s algorithm [2], which uses O(∆
3
4 log∆+ log∗ n)

rounds and was the first deterministic (∆ + 1)-coloring algorithm which
achieved a sublinear in ∆ number of rounds. Faster (∆ + 1)-colorings
can be achieved on special graph classes. The well-known Cole-Vishkin
algorithm [9] colors cycles (and directed trees) using 3 colors in O(log∗ n)
rounds, which is best possible due to a lower bound given by Linial [16].
This algorithm has been extended to bounded-independence graphs by
Schneider and Wattenhofer [19]. For further references, we refer the reader
to the survey by Barenboim and Elkin [4] and the references therein.

Outline. We give notations and definitions in Section 2. Then we present
our coloring algorithms for interval graphs in Section 3 and our lower
bound in Section 4. Our result on multicoloring directed trees is then
given in Section 5. Finally, we conclude in Section 6.

5

2 Preliminaries

Definitions. A distance-k independent set in a graph G = (V,E) is a
subset of vertices I ⊆ V such that every pair of vertices v1, v2 ∈ I is at
distance at least k. A distance-k independent set I is maximal if I ∪ v is
not a distance-k independent set, for all v ∈ V \ I. We call a distance-2
independent set simply independent set. For an integer k, a distance-k-
coloring of a graph G = (V,E) is an assignment γ : V → {1, . . . , s} of s
colors to the vertices such that every pair of vertices at distance at most
k receives different colors. A partial coloring of a graph G = (V,E) is an
assignment γ : V → {1, . . . , s}∪{⊥}, where uncolored nodes are assigned
the symbol ⊥.

For simplicity, we assume that the input graphs are connected. The
neighborhood of a vertex v in graph G is denoted by ΓG(v), and we define
the inclusive neighborhood of v by ΓG [v] = ΓG(v)∪{v}. For a subset V ′ ⊆
V , we write ΓV ′(v) to denote ΓG(v)∩V ′. Furthermore, the k-neighborhood
of a vertex v is the set of nodes that are within distance at most k from
v (excluding v), and we denote it by Γ kG(v). Then Γ 1

G(v) = ΓG(v). For a
vertex v ∈ V , we denote by degG(v) the degree of v in G. For a subset
V ′ ⊆ V , we may also write degV ′(v) for the degree of v in the subgraph
of G induced by the nodes V ′, that is, degV ′(v) := degG|V ′ (v).

Interval Graphs. Let V = {v1, . . . , vn} be a set of intervals with vj =
(aj , bj) for all 1 ≤ j ≤ n and real numbers aj , bj such that aj < bj . We
assume that all ai, bi are distinct. Let G = (V,E) be the corresponding
interval graph, i.e., there is an edge between vertices (intervals) vj , vk if
the two intervals intersect. We denote the number of edges by m.

We say that an interval v is proper if no other interval u satisfies
ΓG [v] (ΓG [u]. For an interval graph G = (V,E), we denote by GP =
(VP , E|VP) the subgraph of G induced by the proper intervals of G. It is
easy to see that GP is connected if G is connected as well.

Graph GP is of bounded-independence, a property that restricts the
sizes of maximum independent sets in local neighborhoods, formally de-
fined as follows:

Definition 2 (Bounded-independence Graphs). A graph G = (V,E)
is of bounded-independence if there is a bounding function f(r) such that
for each node v ∈ V , the size of a maximum independent set in the r-
neighborhood of v is at most f(r), ∀r ≥ 0.

Schneider and Wattenhofer [19] gave a distributed maximal indepen-
dent set algorithm for graphs of bounded-independence that runs in time

6

O(log∗ n). We denote this algorithm by MisBI. It can be implemented in
the CONGEST model.

3 Algorithms for Coloring Interval Graphs

We first give our algorithm for the LOCAL model in Section 3.1 and then
show how to extend the algorithm to the CONGEST model in Section 3.2.

3.1 Algorithm in the LOCAL model

Our algorithm is depicted and explained in Algorithm 1. It is parametrized
by an integer k, which determines the approximation guarantee and whose
precise value is determined later.

Algorithm 1 Algorithm for Coloring Interval Graphs in the LOCAL
Model
1. Identify the subgraph GP of proper intervals: Each node v

checks if it has a neighbor u with ΓG [u]) ΓG [v]. If no such neighbor
exists then v is in GP . This involves a single communication round
where v sends the list of its neighbors to all its neighbors. In one
additional round, each node v informs its neighbors whether v ∈ GP .

2. Compute a distance-k maximal independent set J of GP : The
nodes simulate MisBI on graph GkP , where nodes are adjacent if they
are at distance at most k in GP , in O(k · log∗ n) rounds. The result is
a distance-k maximal independent set J of GP .

3. Color inclusive neighborhoods of J : Each dominator v ∈ J colors
its inclusive neighborhood ΓG[v] optimally using at most χ(G) colors.

4. Color remaining nodes: For any two dominators u, v with
dist(u, v) < 2k and ID(u) > ID(v), u colors all uncolored nodes be-
tween u and v in O(k) rounds as follows: u collects its 2k-neighborhood
including the color constraints given by the already colored neighbor-
hood of v. The best coloring of the remaining nodes is computed
locally and newly colored nodes are informed of their color.

The key part of our analysis is to show that Step 4 of the algorithm
does not require too many colors. To this end, we employ a result by
Valencia-Pabon [22] on coloring circular-arc graphs, which are the inter-
section graphs of a set of arcs on a circle. Given a circular arc graph F ,
the load L(F) is the cardinality of the largest subset of arcs containing

7

L(F) = 3

Fig. 1. A 3-colorable circular arc graph F with load L(F) = 3 and circular-cover
l(F) = 6. The vertices of a circular-cover are illustrated in bold. The result of Valencia-
Pabon (Theorem 1) gives an upper bound of four colors.

the same point. The circular-cover l(F) is the cardinality of the smallest
subset of arcs that cover the entire circle. See Figure 1 for an example.

Theorem 1 (Valencia-Pabon [22]). Let F be a circular arc graph with

load L and circular-cover l ≥ 4. Then b
(

1 + 1
l−2

)
Lc+ 1 colors suffice to

color F .

Equipped with Theorem 1, we prove now the existence of a good
coloring that is required in Step 4 of our algorithm.

Lemma 1. Let G = (V,E) be an interval graph, C1, C2 ⊆ V disjoint
maximal cliques such that dist(v1, v2) ≥ l for every pair of nodes v1 ∈
C1, v2 ∈ C2, for an integer l ≥ 5. Let G′ = G[C1 ∪ C2 ∪ D], where
D ⊆ V is the set of intervals located between C1 and C2. Let γ be a
partial coloring of G′ such that γ(v) ∈ [χ(G′)] for every v ∈ C1 ∪C2, and
γ(v) = ⊥ for v ∈ D. Then, γ can be extended to a coloring that employs
at most b(1 + 1

l−3)χ(G′)c+ 1 colors.

Proof. Let F be the graph obtained from G′ by contracting every pair of
vertices v1 ∈ C1, v2 ∈ C2 with γ(v1) = γ(v2). We will argue that F is
a circular arc graph with load χ(G′) and circular-cover l − 1. Our result
then follows from Theorem 1.

A representation of F with circular arcs can be obtained by, first,
wrapping the line segment that contains all intervals of G′ onto an arc
A (C of a circle C, and then replacing every pair of intervals/arcs
v1 ∈ C1, v2 ∈ C2 with γ(v1) = γ(v2) with an arc of minimal length that
includes v1, v2 and all points of C \A. See Figure 2 for an illustration.

Since we replaced at most χ(G′) pairs of arcs with arcs that cover
C \ A, every point of the arc C \ A is covered by at most χ(G′) arcs.

8

Furthermore, since all points on the arc A are covered by at most χ(G′)
arcs, we obtain L(F) = χ(G′). The circular-cover is at least the length of
the shortest path in G′ from C1 to C2 minus one, i.e., l− 1, since all arcs
of D need to be covered, and pairs of nodes of C1 and C2 are contracted
in F . ut

C1 C2
2

1
1

2

(1) Interval graph

AC1 C2

2

1

2

1

(2) Mapping onto circ. arc

AC1 C2

(3) Connecting C1 with C2

A

(4) Rearranging

Fig. 2. Construction used in the proof of Lemma 1 . Edges of the maximal cliques C1

and C2 are illustrated in bold. The colors of the intervals in C1 and C2 are indicated by
the small numbers next to the intervals. In this example, a path of length 7 is mapped
onto an arc A. Then pairs of vertices with the same color of the maximal cliques C1

and C2 are connected, which gives a cycle of length 5. Every coloring of C5 requires 3
colors.

Using Lemma 1, we show next that our algorithm gives a (1 + ε)-
approximation guarantee:

Theorem 2. Let G = (V,E) be an interval graph and suppose that ε ≥
2

χ(G) . Then, there is a deterministic (1 + ε)-approximation algorithm for

coloring interval graphs in the LOCAL model that runs in O(1ε log∗ n)
rounds.

Proof. Let k = d2ε e + 5. Our algorithm computes a distance-k maximal
independent set J in the subgraph of proper intervals. Observe that J is
also a distance-k independent set in G, since for every shortest path in G
between two nodes of VP , there is one that only traverses edges of GP .
Let u, v be two nodes as in step 4 of the algorithm such that u is left of

9

v. Let C1 be the set of intervals that intersect u’s right boundary, and
let C2 be the set of intervals that intersect v’s left boundary. Then, C1

and C2 are maximal cliques and were colored in step 3 of the algorithm.
Since J is a distance-k independent set, every pair of nodes of C1 and C2

are at a distance of at least k − 2. Then, by Lemma 1, the coloring can
be completed using χ(G)(1 + 1

(k−2)−3) + 1 = χ(G)(1 + 1/d2ε e) + 1 colors,
which simplifies as:

χ(G)(1 +
1

d2ε e
) + 1 ≤ χ(G)(1 +

ε

2
) +

εχ(G)

2

≤ (1 + ε)χ(G),

where we used the assumption ε > 2
χ(G) which implies 1 ≤ χ(G)ε

2 . The run-
time of the algorithm is dominated by the computation of the distance-
k maximal independent set in step 2, which runs in O(k · log∗ n) =
O(1ε log∗ n) rounds. ut

3.2 Adapting the Algorithm to the CONGEST Model

Suppose each node vi ∈ V knows its interval representation boundaries
ai, bi. We assume that the numbers ai, bi require space O(log n). Then,
we show how the previous algorithm can be adapted to operate in the
CONGEST model.

We reuse Steps 1, 2 and 3 from our previous algorithm. Step 4 is re-
placed by a more technical coloring process. Regarding Step 1, exchanging
interval boundaries is enough in order to determine whether a node v ∈ V
is also in VP . Step 2 remains unchanged. For a node v ∈ J to be able to
color its neighborhood optimally in Step 3, it only requires the interval
representation of its neighboring nodes in order to determine the neigh-
borhood relations among them. This information can be exchanged in
one round in the CONGEST model.

After Step 3 of the algorithm, we have computed a distance-k indepen-
dent set J and a partial coloring γ such that nodes ∪w∈JΓG[w] are colored
while all other nodes are uncolored, i.e., γ(z) ∈ [χ(G)], if z ∈ ∪w∈JΓG[w],
and γ(z) = ⊥, otherwise. Every pair of nodes u, v ∈ J with u located left
of v at distance at most 2k− 1 executes the coloring procedure presented
in the following in order to color the uncolored nodes located between
them.

Fix two nodes u, v ∈ J as described above. In the description of our
algorithm, we use the following notations. Denote by C1 (C2) the maximal
clique consisting of intervals that intersect u’s right boundary (resp. v’s

10

left boundary). Let D be the set of intervals outside C1 ∪ C2 located
between u and v. Let Ni ⊆ C1 ∪ C2 ∪D be the set of nodes at distance
i from u, and let N≥i = ∪j≥iNj . We also ensure that every node a ∈ D
learns its distance from u (and thus the index i such that a ∈ Ni). This can
be established by flooding the network with a token initially broadcasted
by u, and the number of rounds it takes until the token reaches node
a ∈ D equals distG(a, u). Denote by ni the interval of Ni that reaches
out furthest to the right. Nodes of Ni can identify this interval easily by
communicating their interval boundaries to their neighbors.

Our coloring procedure requires an implementation of the Greedy col-
oring algorithm as a subroutine in the CONGEST model.

Greedy Coloring Subroutine. W.l.o.g. we present a left-to-right col-
oring initiated by node u; a right-to-left coloring initiated by v can be
obtained similarly. First, node n1 colors the uncolored nodes of its neigh-
borhood: It traverses its uncolored neighbors with increasing left interval
boundary and assigns the smallest possible color. Then, n2 continues with
the same process. The coloring carries on until all ni have colored their
neighborhoods. The runtime of this procedure is O(distG(u, v)) = O(k).

Coloring Process. Node u initiates a left-to-right Greedy coloring γ1
that respects the colors given by γ of C1 (and not necessarily the colors
of C2), and simultaneously, v initiates a right-to-left Greedy coloring γ2
that respects the colors given by γ of C2 (and not necessarily the colors of
C1). We then transform the coloring γ1 into one that respects the colors
γ2 on C2.

Our algorithm operates in k phases, each consisting of three recoloring
steps. In phase i, we alter the coloring γ1 of nodes N≥3i such that γ1
is non-conflicting with colors Ti = {(i − 1)B + 1, . . . , iB} of γ on C2,

where B = dχ(G)
k e. To this end, nodes of N≥3i with a color of Ti recolor

themselves to new colors [χ(G) + 1, χ(G) +B] by adding χ(G)− (i− 1)B
to their own color. Then, nodes of N≥3i+1 with a target color (the color
given by γ2) in Ti recolor themselves to their target color. Last, we initiate
a Greedy recoloring sweep at node n3i+2 that recolors all nodes of N≥3i+2

with a current color > iB to colors in {iB + 1, . . . , χ(G)}.
We prove correctness of this algorithm in the following lemma.

Lemma 2. After phase i of the previous coloring process, the following
holds:

1. ∀w ∈ N≥3i+2 : γ1(w) ∈ [χ(G)],
2. ∀w ∈ N≥3i+1 : γ2(w) ≤ iB ⇒ γ1(w) = γ2(w),
3. γ1 is legal.

11

Proof. Before iteration one (i.e. i = 0), all three items are trivially true.
The first recoloring step of phase i assigns nodes ofN≥3i with current color
in Ti a color larger than χ(G). Note that this leads to a legal coloring,
since by Item 1, none of the nodes of N3i−1 are colored with a color
larger than χ(G). In the second recoloring step, nodes of N≥3i+1 with
target color in Ti receive their target color (which gives Item 2). Again,
γ1 remains legal since after the first recoloring step, none of the nodes
of N3i are colored with a color in Ti. In the third recoloring step, the
Greedy coloring algorithm is executed on the subgraph induced by nodes
Vi = {v ∈ N≥3i+2 : γ1(v) ≥ iB+1}. We claim that the algorithm recolors
Vi with colors in [χ(G)]. Indeed, first note that χ(G[Vi]) ≤ χ(G)−iB, since
γ2 restricted to Vi gives such a coloring. Next, since the Greedy coloring
algorithm processes the intervals with increasing left boundary, all color
constraints when coloring an interval x are imposed by intervals that
intersect x’s left boundary (note that for two intervals x ∈ Nj , y ∈ Nj+1

we always have l(x) < l(y)). Since there are at most ω(G[Vi]) − 1 =
χ(G[Vi]) − 1 such intervals, there is always an available color for x in
[χ(G)], which proves Item 1. Since legality of γ1 is preserved throughout
the three recoloring steps, Item 1 follows. ut

This gives the following theorem:

Theorem 3. Let G = (V,E) be an interval graph and suppose that ε ≥
2

χ(G) . Then, there is a deterministic (1 + ε)-approximation algorithm for

coloring interval graphs in the CONGEST model that runs in O(1ε log∗ n)
rounds.

Proof. Correctness of the algorithm was established in Lemma 2. By con-
struction, the algorithm uses at most χ(G)(1+ 1

k)+1 colors. Thus, we set
k = d2ε e which implies that the number of colors is bounded by (1+ε)χ(G),
which proves the approximation guarantee.

Concerning the runtime of the algorithm, besides an O(k log∗ n) term
for the computation of a distance-k maximal independent set, an additive
O(k2) term is incurred by the Greedy coloring algorithm: In each of the
O(k) phases, we execute the Greedy coloring algorithm which requires
O(k) steps. We argue now that the k2 term can be reduced to k by
pipelining the Greedy recoloring sweeps. Iteration i can be started as
soon as nodes N3i+2 have been recolored by the recoloring sweep initiated
in iteration i− 1. After the initiation of the recoloring sweep of iteration
i−1, it takes only a constant number of iterations until this sweep reaches
nodes N3i+2. Thus, iteration i can be started after a constant number of

12

iterations after the start of iteration i − 1. Thus, by induction, iteration
k can be started O(k) iterations after iteration 1 has been started. The
overall runtime is thus O(k log∗ n+ k) = O(1ε log∗ n). ut

Remark: In the recoloring step, we assume that nodes know χ(G). This
can be circumvented as follows: The initial left-to-right coloring γ1 is an
optimal coloring of nodes C1∪C2∪D. Nodes in C1∪C2∪D compute the
largest color employed by γ1. This value replaces χ(G) in the algorithm.

4 Lower Bound for Coloring Interval Graphs in the
LOCAL Model

Linial’s lower bound shows that every distributed algorithm for coloring
the n-cycle with three colors requires time Ω(log∗ n). Since it is possible to
decrement the number of colors of a c-coloring, for c ≥ ∆+ 2, in a single
communication rounds using a standard method, Linial’s lower bound
even holds for coloring the ring with O(log∗ n) colors. Furthermore, this
lower bound can easily be adapted to hold for a path of length n (which is
also an interval graph and can be colored with two colors). it follows that
computing a O(log∗ n)-approximate interval coloring requires Ω(log∗ n)
rounds.

We present now a different lower bound argument that holds for inter-
val graphs with arbitrary chromatic number. Specifically, we show that
every distributed (1 + ε)-approximation algorithm for interval coloring
requires Ω(1ε) rounds.

To this end, we give a lower bound for multicoloring a path and pro-
vide a reduction between coloring intervals and path multicoloring.

Let G(V,E,w) be a weighted path on n vertices with w(v) = k, for
every v ∈ V . Then the multichromatic number of G is χm(G) = 2k:
alternate between the first k and the second k colors while traversing the
path from left to right. We prove now that if φ is a (1 + ε)-approximate
multicoloring of G, then the color sets of nodes at even distances have a
large intersection and the color sets of nodes at odd distances have small
intersection.

Lemma 3. Let φ : V → 2N be a (1 + ε)-approximate multicoloring of a
path G = (V,E,w) with w(v) = k, for every v ∈ V . Then, for u, v ∈ V
and an integer r ≥ 1:

1. If dist(u, v) = 2r then |φ(u) ∩ φ(v)| ≥ k − 2krε,

2. If dist(u, v) = 2r + 1 then |φ(u) ∩ φ(v)| ≤ 2krε.

13

Proof. Since φ is a (1 + ε)-approximate multicoloring of G, we have
|φ(V)| ≤ 2(1 + ε)k. Let v0, v1, . . . denote the vertices of the path so that
vi and vi+1 are adjacent. Then, by Item 1 of Definition 1, it holds that
|φ(vi) ∩ φ(vi+1)| = 0. We further have |φ(vi) ∩ φ(vi+2)| ≥ k − 2εk, since
the total number of colors employed is bounded by

2(1 + ε)k ≥ |φ(vi+1)|+ |φ(vi)|+ |φ(vi+2)| − |φ(vi) ∩ φ(vi+2)|
= 3k − |φ(vi) ∩ φ(vi+2)|,

which implies the claimed bound. Next, we use the relationship

|φ(v0) ∩ φ(v2r)| ≥ |φ(v0) ∩ φ(v2r−2)| − |φ(v2r) \ φ(v2r−2)|
= |φ(v0) ∩ φ(v2r−2)| − (k − |φ(v2r) ∩ φ(v2r−2)|)
≥ |φ(v0) ∩ φ(v2r−2)| − 2εk,

which implies |φ(v0)∩φ(v2r)| ≥ k(1− 2rε) and proves Item 1. Last, since
|φ(v0) ∩ φ(v1)| = 0 and |φ(v1) ∩ φ(v2r+1)| ≥ k(1− 2rε) , we obtain

|φ(u) ∩ φ(v2r+1)| ≤ |φ(v2r+1) \ φ(v1)| ≤ k − |φ(v1) ∩ φ(v2r+1)| = 2krε,

which proves Item 2. ut

Equipped with Lemma 3 we are ready to prove our lower bound on
computing a multicoloring on the path. Let G = (V,E,w) denote the
path of length n with w(v) = k, for every v ∈ V , and suppose that every
vertex v receives a unique label L(v), where L is chosen uniformly at
random from the set of bijections between V and {1, . . . , n}.

Theorem 4. Every possibly randomized distributed algorithm with error
probability at most 1/3 that computes a (1 + ε)-approximate multicoloring
on a path G = (V,E,w) with vertex weights w(v) = k, for every v ∈ V ,
requires at least 1

4ε −
1
2 rounds.

Proof. Let v1, . . . , vn denote the vertices of G such that vi and vi+1 are
adjacent, and let φ denote the output multicoloring of the algorithm.
Suppose that the algorithm runs in r rounds. Consider an index j such
that r + 1 ≤ j ≤ n − 3r − 2. Then, since the error probability of the
algorithm is at most 1/3 and by applying Lemma 3, we obtain

P [|φ(vj) ∩ φ(vj+2r+2)| ≥ k − 2k(r + 1)ε] ≥ 2/3 , (1)

P [|φ(vj) ∩ φ(vj+2r+1)| ≤ 2krε] ≥ 2/3 , (2)

where the probabilities are taken over the coin flips of the nodes and
the labeling function L. Since the outputs of two nodes at distance at

14

least 2r + 1 are independent (the output of a node is a function of the
labels and random coin flips in its r-neighborhood), for every integer c we
obtain P [|φ(vj) ∩ φ(vj+2r+2)| = c] = P [|φ(vj) ∩ φ(vj+2r+1)| = c] . Thus,
Inequality 1 implies

P [|φ(vj) ∩ φ(vj+2r+1)| ≥ k − 2k(r + 1)ε] ≥ 2/3 . (3)

Suppose now that r < 1
4ε −

1
2 . Then, Inequality 3 gives

P
[
|φ(vj) ∩ φ(vj+2r+1)| > k(

1

2
+ ε)

]
≥ 2/3 ,

while Inequality 2 gives P
[
|φ(vj) ∩ φ(vj+2r+1)| < k(12 + ε)

]
≥ 2/3, a con-

tradiction. Thus, r ≥ 1
4ε −

1
2 holds which completes the proof. ut

Finally, we provide a reduction from multicoloring the path to interval
coloring.

Theorem 5. Every possibly randomized distributed (1+ε)-approximation
algorithm with error probability 1/3 for coloring interval graphs requires
Ω(1ε) rounds.

Proof. Let A be an algorithm as described in the statement of the the-
orem. Then, A can be used to compute a multicoloring of the path
G = (V,E,w) with w(v) = k, for any integer k, as follows: The nodes
v ∈ V simulate a fat path G′ = (V ′, E′) where every vertex v ∈ V is
replaced by a clique C(v) of size k and two cliques C(v) and C(u) are ad-
jacent if and only if u and v are adjacent in G. Such a fat path constitutes
an interval graph and thus algorithm A can be simulated to compute a
(1 + ε)-approximate coloring γ. We then set φ(v) = ∪v′∈C(v)γ(v′) which
gives a (1 + ε)-approximation to the multicoloring problem. The simula-
tion can be implemented with a constant factor blow-up on the number
of communication rounds. The lower bound of Theorem 4 thus translates
within a constant factor. ut

5 Multicoloring Directed Trees

In this section, we work with a directed rooted tree T = (V,E,w) with
vertex weights w, where edges are directed from root to leaves. We still as-
sume that nodes that are connected via a directed edge can communicate
in both directions. The directions of the edges provides the nodes with

15

additional information about the structure of the underlying tree that
help during the multicoloring process, i.e., knowledge of their parent.

In the following, for a vertex v ∈ V in tree T , we write parentT (v) to
denote the parent of v in T (the parent of the root node is undefined).
We first partition T into clusters, which is described in Subsection 5.1.
The multicoloring step is then described in Subsection 5.2.

5.1 Clustering Step

In the first step of our algorithm we compute a partitioning of T into
subtrees or clusters, where the set of root nodes of the subtrees forms a
(p, q)-ancestor ruling set, defined as follows:

Definition 3 ((p, q)-ancestor ruling set). A (p, q)-ancestor ruling set
of a rooted tree T = (V,E) is a subset of vertices I ⊆ V such that:

1. If u, v ∈ I and v is a descendant of u, then the distance between u
and v is at least p.

2. For every u ∈ V \ I, there is an ancestor of u at distance at most q
which is also in I.

Notice that the root is in every ancestor ruling set. We show now how to
compute a (2t, 2t+2 − 1)-ancestor ruling set in O(2t log∗ n) rounds. Our
algorithm runs in t iterations. In each iteration, the maximal independent
set algorithm depicted in Algorithm 2 is used.

Algorithm 2 Subroutine employed for computing a (p, q)-ancestor ruling
set
Require: T (V,E) directed tree

Coloring: Compute 3-coloring on T using the Cole-Vishkin algorithm in O(log∗ n)
rounds
for i← 2, 3 do

Shift-down: Each node colors itself using the color of its parent. If i = 2 then
the root selects a color which is different from its old color and different from the
first color. If i = 3 then the root selects the first color.

end for
Independent Set Computation:
I ← first color class of coloring
for i← 2, 3 do

Every node v of color class i joins I if I ∪ {v} is an independent set
end for
return I

16

Given a directed tree, we first employ the Cole-Vishkin algorithm and
compute a 3-coloring of T . Next, we use two iterations of the shift-down
technique (see for example [4]), which is a subroutine employed for the
task of reducing the number of colors from six to three in the Cole-Vishkin
algorithm. The effect of one iteration is that the children of any node have
the same color. Executing two iterations of shift-down ensures that for
every node, not only its children have the same color but also the children
of its children. Finally, we augment the first color class I, which forms
an independent set, to a maximal independent set by adding additional
vertices of the second and third color classes to I. Notice that I is maximal
by construction. Furthermore, set I always contains the root node of the
tree, since we assigned the first color to the root in the second shift-down
step. The runtime of the algorithm is dominated by the execution of the
Cole-Vishkin algorithm, which runs in O(log∗ n) rounds. Set I has the
following useful property:

Lemma 4. Let T (V,E) be the directed input tree of Algorithm 2, and let
I denote the output independent set. Then, for every v ∈ V \ I, either the
parent or grandparent of v is in I.

Proof. Notice that the root is in I. The statement is thus true for every
node at distance at most 2 from the root. Suppose now that v is at distance
at least 3 from the root. Let p = parent(v) and q = parent(p). For the sake
of a contradiction, suppose that neither p nor q is in I. Then p, q and v
were not in the first color class of the computed coloring. Further, v and q
received the same color and p the remaining color. Suppose that p received
the second color (the case when p received the third color is similar and
omitted). Since p is not in I, a vertex incident to p is necessarily in the
first color class. Since neither q nor v are in the first color class, one of
v’s siblings must be in the first color class. This is a contradiction, since
due to the shift-down steps employed in the algorithm, the siblings of v
have the same color as v. ut

Our ruling set algorithm employs t iterations of Algorithm 2. Let
I1 = V . For 1 ≤ i ≤ t, construct directed tree Ti(Ii, Ei), where two
nodes u, v ∈ Ii are adjacent if among the nodes of Ii, u is the closest
ancestor of v in T . Let Fi be the forest obtained from Ti by removing all
edges (u, v) with distT (u, v) ≥ 2i. We run Algorithm 2 on every tree of Fi
simultaneously. Let Ii+1 be the union of the computed independent sets
of all trees of Fi. The algorithm returns It+1.

We prove next that this algorithm computes a (2t, 2t+2 − 1)-ancestor
ruling set.

17

Lemma 5. For every integer t, a (2t, 2t+2 − 1)-ancestor ruling set in a
directed tree T = (V,E) can be computed in O(2t log∗ n) rounds.

Proof. We employ t iterations of Algorithm 2. Let I1 = V . For 1 ≤ i ≤ t,
construct directed tree Ti(Ii, Ei), where two nodes u, v ∈ Ii are adjacent
if among the nodes of Ii, u is the closest ancestor of v in T . Let Fi be the
forest obtained from Ti by removing all edges (u, v) with distT (u, v) ≥ 2i.
We run Algorithm 2 on every tree of Fi simultaneously. Let Ii+1 be the
union of the computed independent sets of all trees of Fi. The algorithm
returns It+1. Notice that V = I1 ⊇ I2 ⊇ · · · ⊇ It+1.

We will next prove the following two claims by induction on i:

1. For every pair of adjacent vertices (u, v) in Ti, it holds that 2i−1 ≤
distT (u, v) < 2i+1.

2. For every leaf u in T , there exists a vertex v ∈ Ii with distT (u, v) ≤
2i+1 − 1.

For i = 1, we consider T1 = T and both claims are trivially true. Suppose
now that both claims are true for index i ≥ 1. We first prove that Claim 1
also holds for i+ 1:

Claim 1. Let Ri be the set of root nodes of the trees of Fi. Since the
root node of a tree is always included in the output of Algorithm 2, we
have Ri ⊆ Ii+1.

First, consider v ∈ Ri and let u = parentTi(v). Then since v is a
root node in Fi, we have 2i ≤ distT (v, u) < 2i+1. If u ∈ Ii+1 then the
claim is true. Hence, suppose that u /∈ Ii+1 and let u′ = parentTi(u). Then
distT (v, u′) = distT (v, u)+distT (u, u′) and hence 2i+2i−1 ≤ distT (v, u′) <
2i+1 + 2i. Thus, if u′ ∈ Ii+1 then the claim is true. Hence, suppose that
u′ is not in Ii+1 and let u′′ = parentTi(u

′). By Lemma 4 (applied to node
u), u′′ is included in Ii+1. Then, distT (v, u′′) = distT (v, u′) + distT (u′, u′′)
and hence 2i + 2i−1 + 2i−1 ≤ distT (v, u′) < 2i+1 + 2i + 2i, which implies
the claim.

Consider now an arbitrary node v ∈ Ii+1 \ Ri. Since Ii+1 is an inde-
pendent set in Fi, the distance between v and any other node u ∈ Ii+1 in
Ti is at least two, which in turn implies distT (u, v) ≥ 2 · 2i−1 and proves
the lower bound of the claim. To see the upper bound, consider the node
u = parentTi(v). Then by Lemma 4, either u’s parent u′ or grandparent
u′′ is included in Ii+1. Since all vertices v, u, u′ and u′′ are included in the
same tree, we have distT (v, u′′) < 3 · 2i and the upper bound thus also
holds.

Claim 2. Let v be an any leaf in T . Then, by the induction hypothesis,
there exists a vertex u ∈ Ii with distT (v, u) ≤ 2i+1−1. If u is also included

18

in Ii+1, then the claim is trivially true. Suppose now that u /∈ Ii+1. Then,
by Lemma 4, either u’s parent u′ or u’s grandparent u′′ in Ti is included in
Ii+1. We have distT (u, u′′) = distT (u, u′) + distT (u′, u′′) < 2i + 2i = 2i+1.
Hence, distT (v, u′′) = distT (v, u)+distT (u, u′′) ≤ 2i+1−1+2i+1 = 2i+2−1,
which proves the claim.

We argue now that It+1 is a (2t, 2t+2− 1)-ancestor ruling set. Indeed,
Claim 1 shows that Item 1 of Definition 3 is fulfilled. To see Item 2 of
Definition 3, consider an arbitrary node v ∈ V \It+1. Notice that the root
of T is included in It+1, since Algorithm 2 always includes the root node
in the output independent set Suppose that the subtree below v contains
a node of Ii+1 and let u ∈ Ii+1 be the one that is closest to v. Let u′ be the
closest ancestor of v in It+1. Since by Claim 1 we have distT (u, u′) < 2t+2,
we obtain distT (v, u′) ≤ 2t+2 − 1. Suppose next that the subtree below v
does not contain a node of It+1. By Claim 2, for every leaf in T there is
an ancestor which belongs to It+1 at distance at most 2t+2 − 1. Hence, v
is either a leaf or located between a leaf and a node of It+1, and hence,
the distance between v and a node of It+1 is at most 2t+2 − 1.

Last, concerning the runtime of the algorithm, the execution of Algo-
rithm 2 on Ti can be simulated with O(2i+1 log∗ n) rounds on T . Since
we run t iterations, the runtime of the algorithm is O(

∑t
i=1 2i+1 log∗ n) =

O(2t log∗ n). ut

5.2 Multicoloring Step

Let I be a (2t, 2t+2 − 1)-ancestor ruling set as output by the algorithm
of Lemma 5, for a parameter t whose value we determine later. From I
we obtain a clustering of T into subtrees Tv with v ∈ I as follows: Every
vertex u ∈ V joins the subtree rooted at vertex v ∈ I, where v is the
closest ancestor of u in I or u = v. The length of every root-to-leaf path
in a cluster Tv is then bounded by 2t+2 − 1 and the roots of adjacent
clusters are at distances at least 2t.

Coloring. Our multicoloring process consists of two steps. First, each
cluster Tv multicolors itself using at most χm(G) colors. The multicolor-
ings of two adjacent clusters Tu, Tv are independent from each other and
may thus be conflicting. Then, in a second step we correct the local mul-
ticolorings to obtain a coherent global multicoloring. In this correction
step, the root node of a cluster may change all of its colors. Then a color
rotation is applied, which gradually changes the initial multicoloring from
the root towards the leaves.

Each cluster Tv executes the following two steps:

19

1. Initial Multicoloring. Each cluster Tv first computes a quantity
wvmax ≤ χm(G), which is sufficient to color Tv, as follows: Let T ′v be
the subtree that contains Tv, the parent of v, and the children of the
leaves of Tv. Let wvmax ← max(u,v)∈E(T ′v)

w(u) + w(v). Then, nodes of
Tv color themselves as follows:
– Nodes u at even distances to v (including v) use colors {1, . . . , w(u)}.
– Nodes u at odd distances to v use colors {wvmax−w(u)+1, . . . , wvmax}.

2. Color Rotations. If there is no coloring conflict between v and
parent(v) (which is a node of a different cluster), then stop and return
the current multicoloring. Otherwise, let δ = 1

2t−1−2 + 2
wvmax

. Nodes
u ∈ Tv recolor themselves as follows:
– If dist(u, v) = 2l (the case l = 0 captures vertex v) then use colors

starting at color 1 up to color at most l · bδwvmaxc first. If more
colors are needed, i.e., w(u) > l · bεwvmaxc, then use additional
colors starting at the highest color wvmax + bδwvmaxc downwards.

– If dist(u, v) = 2l+1 we distinguish two cases: If l·bδwvmaxc+w(u) ≤
wvmax + bδwvmaxc then use colors from l · bδwvmaxc + 1 upwards.
Otherwise, use colors starting at color wvmax+bδwvmaxc downwards.

The key observation that proves correctness of the color rotation
scheme is that a node u that is far enough away from the root keeps
its colors if its initial colors were the first w(u) colors, and shifts its color
palette from {wvmax−w(u)+1, . . . , wvmax} upwards by bδwvmaxc colors oth-
erwise. This property is used to show that there are no conflicts between
adjacent trees.

Lemma 6. The algorithm produces a legal multicoloring.

Proof. The proof consists of two steps. First, we prove that two adjacent
vertices in the same cluster receive different colors. Then, we show that
two adjacent vertices of different clusters also receive different colors.

Let u, u′ = parent(u) ∈ Tv, for some v ∈ I. First notice that w(u) +
w(u′) ≤ wvmax, by definition of wvmax. Thus, after the initial coloring step,
the color sets of u and u′ are disjoint. Suppose that the color rotation
takes place since otherwise this case is trivial. We only prove the case
dist(u, v) = 2l + 1, for some integer l, the case when dist(u, v) is even
is similar. Suppose first that l · bδwvmaxc + w(u) ≤ wvmax + bδwvmaxc.
Then u uses colors starting at color l · bδwvmaxc + 1 upwards. Node u′

uses colors 1 up to l · bδwvmaxc, which are non-conflicting with the col-
ors of u, and potentially additional colors starting with the highest color
wvmax + bδwvmaxc downwards. Thus, if there was an overlap of colors, then

20

u and u′ together would use more than wvmax colors, a contradiction, since
w(u) +w(u′) ≤ wvmax. In the case l · bδwvmaxc+w(u) > wvmax + bδwvmaxc, u
uses colors starting at the largest color downwards. Then the inequality
w(u′) ≤ l·bδwvmaxc necessarily holds, since otherwise w(u)+w(u′) > wvmax.
Hence, u′ uses colors starting at color 1 upwards and there are no coloring
conflicts.

It remains to prove that the colors of a pair of vertices u, u′ = parent(u)
with u ∈ Tu and u′ ∈ Tv with v 6= u are disjoint. Notice that u is the root
of Tu. Since I is a (2t, 2t+2−1)-ancestor ruling set, we have dist(v, u) ≥ 2t

and hence dist(v, u′) ≥ 2t − 1. Suppose first that there was no coloring
conflict between u and u′ after the initial multicoloring. At this point, the
color set of u is {1, . . . , w(u)} (this color set is also u’s final set of colors)
and the color set of u′ is {wvmax − w(u′) + 1, . . . , wvmax} (notice that this
also implies that dist(u′, v) = 2l+1, for some l). If no color rotation takes
place in Tv then there is clearly no coloring conflict. Thus, suppose that
the color rotation in Tv takes place. Since dist(u′, v) = 2l+ 1, for some l,
and dist(u′, v) ≥ 2t − 1, we have l ≥ 2t−1 − 1. Then,

l · bδwvmaxc ≥ (2t−1 − 1)(δwvmax − 1)

= (2t−1 − 1)

(
(

1

2t−1 − 2
+

2

wvmax

)wvmax − 1

)
> wvmax + δwvmax, (4)

for t ≥ 3, and hence after the color rotation step, u′ uses colors starting at
the largest color wvmax + bδwvmaxc downwards. There is hence no coloring
conflict between u and u′.

Next, suppose that there is a coloring conflict between u and u′ af-
ter the initial coloring. Then, after the initial coloring, the color set of
u is {1, . . . , w(u)} and the color set of u′ is {1, . . . , w(u′)} (and hence
dist(u′, v) = 2l, for some l). Since dist(u′, v) = 2l ≥ 2t − 1 is even, we
obtain l ≥ 2t − 1

2 . Then, similar to Inequality 4, we obtain l · bδwvmaxc >
wvmax + δwvmax. Hence, after the recoloring step of Tw the colors of u′ have
not changed. Then, since u recolored itself in the color rotation step with
colors starting at the largest color wumax + bδwumaxc downwards, there is
no coloring conflict. ut

Theorem 6. There is a distributed deterministic (1 + ε)-approximation
multicoloring algorithm for directed trees G(V,E,w) using O(1ε log∗ n)
rounds, for every ε ≥ 4

χm(G) .

Proof. Correctness of the algorithm is established in Lemma 6. It remains
to chose an appropriate value for t employed in our algorithm. By con-

21

struction, every cluster Tv uses

wvmax + bδwvmaxc ≤ wvmax(1 +
1

2t−1 − 2
) + 2

≤ χm(G)(1 +
1

2t−1 − 2
) +

1

2
εχm(G)

colors, where we used the definition of δ = 1
2t−1−2 + 2

wvmax
and the assump-

tion 2 ≥ 1
2εχ

m(G) of the theorem. Hence, setting t = ln(1ε + 2) + 2, the
algorithm is a (1 + ε)-approximation.

Notice that the computation of wvmax can be done in O(2t) rounds.
Furthermore, every node can learn its distance from the root of its cluster
also in O(2t) rounds. The runtime is dominated by the computation of the
(2t, 2t+2 − 1)-ancestor ruling set, which requires O(1ε log∗ n) rounds. ut

6 Conclusion

In this paper, we have presented a distributed (1 + ε)-approximation al-
gorithm for coloring interval graphs, which runs in O(1ε log∗ n) rounds. It
runs in the LOCALmodel and can also be implemented in the CONGEST
model if nodes are aware of their interval representations. We also gave
a lower bound of Ω(1ε). We further demonstrated that the color rotation
technique employed in our CONGEST model algorithm can be useful for
other coloring problems as well.

How can we extend our results to more general graph classes such as
chordal graphs, which are a superclass of interval graphs? Since chordal
graphs contain trees, Linial’s lower bound on coloring trees [16] shows
that every constant factor approximation algorithm for coloring chordal
graphs requires Ω(log n) rounds. Can we obtain a (1 + ε)-approximation
on chordal graphs using O(poly(1ε) · polylog n) rounds in the LOCAL
model? If nodes are aware of their index in a perfect elimination ordering
of the chordal graph, can we obtain for example a O(poly(1ε) · log∗ n)
rounds algorithm?

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm
for the maximal independent set problem. Journal of Algorithms 7(4), 567 – 583
(1986)

2. Barenboim, L.: Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static,
dynamic, and faulty networks. J. ACM 63(5), 47:1–47:22 (2016), http://dl.acm.
org/citation.cfm?id=2979675

22

3. Barenboim, L., Elkin, M.: Sublogarithmic distributed mis algorithm for sparse
graphs using nash-williams decomposition. Distributed Computing 22(5), 363–379
(2010)

4. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and
Recent Developments. Synthesis Lectures on Distributed Computing The-
ory, Morgan & Claypool Publishers (2013), http://dx.doi.org/10.2200/

S00520ED1V01Y201307DCT011

5. Barenboim, L., Elkin, M., Gavoille, C.: A fast network-decomposition algo-
rithm and its applications to constant-time distributed computation. In: Post-
Proceedings of the 22Nd International Colloquium on Structural Information
and Communication Complexity - Volume 9439. pp. 209–223. SIROCCO 2015,
Springer-Verlag New York, Inc., New York, NY, USA (2015), http://dx.doi.

org/10.1007/978-3-319-25258-2_15

6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. J. ACM 63(3), 20:1–20:45 (Jun 2016), http://doi.acm.org/
10.1145/2903137

7. Bollobs, B.: Chromatic number, girth and maximal degree. Discrete Mathematics
24(3), 311 – 314 (1978)

8. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between ran-
domized and deterministic complexity in the local model. In: Proceedings 57th
IEEE Symposium on Foundations of Computer Science (FOCS). pp. 615–624
(2016)

9. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Inf. Control 70(1), 32–53 (Jul 1986), http://dx.doi.org/10.

1016/S0019-9958(86)80023-7

10. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 Octo-
ber 2016, Hyatt Regency, New Brunswick, New Jersey, USA. pp. 625–634 (2016),
http://dx.doi.org/10.1109/FOCS.2016.73

11. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in
sparse graphs. SIAM J. Discrete Math. 1(4), 434–446 (1988), http://dx.doi.org/
10.1137/0401044

12. Halldórsson, M.M., Konrad, C.: Distributed Algorithms for Coloring In-
terval Graphs, pp. 454–468. Springer (2014), http://dx.doi.org/10.1007/

978-3-662-45174-8_31

13. Harris, D.G., Schneider, J., Su, H.H.: Distributed (∆+1)-coloring in sublog-
arithmic rounds. In: Proceedings of the Forty-eighth Annual ACM Symposium on
Theory of Computing. pp. 465–478. STOC ’16, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2897518.2897533

14. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

15. Kuhn, F.: Local multicoloring algorithms: Computing a nearly-optimal TDMA
schedule in constant time. In: 26th International Symposium on Theoretical As-
pects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Ger-
many, Proceedings. pp. 613–624 (2009), http://dx.doi.org/10.4230/LIPIcs.

STACS.2009.1852

16. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (Feb 1992), http://dx.doi.org/10.1137/0221015

23

17. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In:
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing.
pp. 1–10. STOC ’85, ACM, New York, NY, USA (1985), http://doi.acm.org/
10.1145/22145.22146

18. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the
chromatic number or the neighborhood growth. Theor. Comput. Sci. 509, 40–50
(Oct 2013), http://dx.doi.org/10.1016/j.tcs.2012.09.004

19. Schneider, J., Wattenhofer, R.: An Optimal Maximal Independent Set Algorithm
for Bounded-Independence Graphs. Distributed Computing 22 (March 2010)

20. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry break-
ing. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing. pp. 257–266. PODC ’10, ACM, New York, NY, USA
(2010), http://doi.acm.org/10.1145/1835698.1835760

21. Smith, D.A.: The First-fit Algorithm Uses Many Colors on Some Interval Graphs.
Ph.D. thesis, Arizona State University, Tempe, AZ, USA (2010), aAI3428197

22. Valencia-Pabon, M.: Revisiting Tucker’s algorithm to color circular arc graphs.
SIAM J. Comput. 32(4), 1067–1072 (2003)

23. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing 3(1), 103–128 (2007)

24

